بهبود کارایی طبقهبندیکننده مبتنی بر نمایش تنک برای طبقهبندی سیگنالهای مغزی
Authors
Abstract:
In this paper, the problem of classification of motor imagery EEG signals using a sparse representation-based classifier is considered. Designing a powerful dictionary matrix, i.e. extracting proper features, is an important issue in such a classifier. Due to its high performance, the Common Spatial Patterns (CSP) algorithm is widely used for this purpose in the BCI systems. The main disadvantages of the CSP algorithm are its sensibility to noise and the over learning phenomena when the number of training samples is limited. In this study, to overcome these problems, two modified form of the CSP algorithms, namely the DLRCSP and GLRCSP have been used. Using the adopted methods, the average detection rate is increased by a factor of about 7.78 %. Also, a problem of the SRC classifier which uses the standard BP algorithm is the computational complexity of the BP algorithm. To overcome this weakness, we used a new algorithm which is called the SL0 algorithm. Our classification results show that using the SL0 algorithm, the classification process is highly speeded up. Moreover, it leads to an increase of about 1.61% in average correct detection compared to the basic standard algorithm.
similar resources
بهبود کارایی طبقه بندی کننده مبتنی بر نمایش تنک برای طبقه بندی سیگنالهای مغزی
در این مقاله مسئله طبقه بندی سیگنالهای eeg مبتنی بر تصور حرکتی برای یک سیستم واسط مغز-کامپیوتر (bci)، توسط طبقه بندی کننده مبتنی بر نمایش تنک (src) مورد توجه واقع شده است. این طبقه بندی کننده برای کارایی بالا نیاز به طراحی ماتریس دیکشنری قوی دارد. با توجه به کارایی بالای الگوریتم الگوهای مکانی مشترک (csp) در سیستمهای bci، از این روش برای طراحی ماتریس دیکشنری استفاده شده است. از معایب cspحساس به...
full textبهینهسازی وزنها در کرنل مرکب برای طبقهبند مبتنی بر نمایش تنک کرنلی
طبقهبند مبتنی بر نمایش تنک (SRC)یکی از الگوریتمهای موفق در ترکیب مفاهیم مطرح در دو حوزه نمونهبرداری فشرده و آموزش ماشین است. در SRC، هر نمونه بر اساس ترکیب خطی تنکی از نمونههای آموزشی نمایش داده میشود. با توجه به موفقیتهای اولیه این الگوریتم، فرم کرنلیزه آن (KSRC) نیز ارائه شده که در آن دادهها با استفاده از تابع کرنل به طور غیر صریح به فضای ویژگی جدیدی با ابعاد بالاتر نگاشت یافته و سپسSR...
full textبهبود کارایی سیستم های واسط مغز و کامپیوتر با استفاده از تکنیک های شناسایی الگو مبتنی بر نمایش تنک
در سال های اخیر، واسط مغز – رایانه (bci)، به عنوان وسیله ای جدید برای ارتباط بین مغز انسان و محیط اطرافش مورد توجه قرار گرفته است. به منظور راه اندازی چنین سیستمی، همکاری چند بلوک از جمله بلوک های ثبت، پردازش سیگنال و رابط کاربری مورد نیاز است. بلوک پردازش سیگنال شامل بلوک های پیش پردازش و شناسایی الگو است و بلوک شناسایی الگو شامل دو مرحله استخراج ویژگی و طبقه بندی می باشد. در این پروژه روش های...
15 صفحه اولطبقهبندی کننده دومرحلهای مبتنی بر نمایش تنک و کاربرد آن در تشخیص سرطان
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ ﻣﻮﻓﻘﻴﺖﺁﻣﻴﺰ ﻃﺒﻘﻪﺑﻨﺪیﻛﻨﻨﺪﻩ ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ (SRC) ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﺯﻳﺮﻓﻀﺎی ﺗﻨﮏ (SSC) ﺩﺭ ﻛﺎﺭﺑﺮﺩﻫﺎی ﻣﺨﺘﻠﻒ، ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺎ ﺗﺮﻛﻴﺐ ﺍﻳﻦ ﺩﻭ ﺭﻭﺵ، ﻳﮏ ﺭﻭﺵ ﻃﺒﻘﻪﺑﻨﺪی ﺳﻠﺴﻠﻪ ﻣﺮﺍﺗﺒﻰ ﺍﺭﺍﺋﻪ ﻣﻰﺷﻮﺩ. ﺍﻳﺪﻩ ﺍﺻﻠﻰ ﺩﺭ ﺭﻭﺵﻫﺎی ﻃﺒﻘﻪﺑﻨﺪی ﻭ ﺧﻮﺷﻪﺑﻨﺪی ﻣﺒﺘﻨﻰ ﺑﺮ ﻧﻤﺎﻳﺶ ﺗﻨﮏ، ﻧﻤﺎﻳﺶ ﻫﺮ ﺩﺍﺩﻩ ﺑﻪ ﺻﻮﺭﺕ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺗﻨﮏ ﺍﺯ ﺳﺎﻳﺮ ﺩﺍﺩﻩﻫﺎ ﺍﺳﺖ ﺑﻪ ﮔﻮﻧﻪﺍی ﻛﻪ ﺩﺍﺩﻩﻫﺎی ﻣﺸﺎﺑﻪ ﺑﺎ ﺩﺍﺩﻩ ﻣﻮﺭﺩ ﻧﻈﺮ ﺩﺭ ﺍﻳﻦ ﺗﺮﻛﻴﺐ ﺧﻄﻰ ﺑﻴﺸﺘﺮﻳﻦ ﻭﺯﻥ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ ...
full textیک الگوریتم موجک هار بهبود یافته برای نمایش تنک تصویر
به منظور دریافت یک نمایش تصویر کارآمد یک تبدیل موجک هار بهبود یافته معرفی می شود،که به تبدیل تترولت معروف است. تترولت ها نوعی موجک هار هستند که توسط تترومینوهایی که به شکل چهار مربع هم اندازه متصل به هم هستند حمایت می شوند.
بهبود عملکرد طبقه بندی کننده مبتنی بر نمایش تنک در سیستم های bci با بهسازی فرایند استخراج ویژگی و استفاده از الگوریتم بهینه یافتن پاسخ تنک
در سال های اخیر، واسط مغز – رایانه (bci)، به عنوان وسیله ای جدید برای ارتباط بین مغز انسان و محیط اطرافش مورد توجه قرار گرفته است. به منظور راه اندازی چنین سیستمی، همکاری چند بلوک از جمله بلوک های ثبت، پردازش سیگنال و رابط کاربری مورد نیاز است. بلوک پردازش سیگنال شامل بلوک های پیش پردازش و شناسایی الگو است و بلوک شناسایی الگو شامل دو مرحله استخراج ویژگی و طبقه بندی می باشد. در این مقاله از طبقه...
full textMy Resources
Journal title
volume 12 issue 3
pages 43- 55
publication date 2015-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023